The Environmental-Clinical Nexus: How Agricultural Fungicide Use is Driving the Antifungal Resistance Crisis and the Race for Novel Solutions
DOI:
https://doi.org/10.65459/pmhj.000000001Keywords:
Antifungal resistance, Priority, diagnosis, Marine compounds, NanotechnologyAbstract
Background: Fungal pathogens are an increasing global health threat, especially for immunocompromised individuals. The rise of antifungal resistance, driven by factors such as overuse of agricultural pesticides, challenges effective treatment. In response, the WHO published its first Fungal Priority Pathogens List (FPPL) in 2022, guiding research and public health efforts. Objectives: This review synthesizes current knowledge on the WHO priority fungal pathogens, explores factors driving antifungal resistance, and highlights emerging diagnostic and therapeutic strategies, such as marine natural products and nanotechnology, to combat these infections. Methods: A narrative literature review was conducted using databases like PubMed, Scopus, and Web of Science, along with official WHO reports. The search focused on publications from 2008 to 2024 using keywords such as "antifungal resistance," "WHO fungal priority list," "marine natural products," and "nanotechnology antifungals." Results: The review presents details on the 19 pathogens listed on the WHO FPPL, categorized into three priority tiers: critical, high, and medium. Emphasis is placed on the top five threats: Cryptococcus spp., Aspergillus spp., Candida spp., Fusarium spp., and Mucorales. Promising strategies include marine natural products as sources of new compounds, nano-enabled technologies for better drug delivery, and the importance of rapid, accurate diagnostics. Conclusion: Fungal pathogens remain a serious threat, worsened by increasing drug resistance. A comprehensive approach combining improved diagnostics, antimicrobial stewardship, and the development of innovative treatments from marine metabolites and nanotechnology is essential for better patient outcomes.
References
1. Olatunji, A.O., Olaboye, J.A., Maha, C.C., Kolawole, T.O. and Abdul, S., 2024. Environmental microbiology and public health: Advanced strategies for mitigating waterborne and airborne pathogens to prevent disease. International Medical Science Research Journal, 4(7), pp.756-770.
2. Vermund, S.H., Scott, M.E. and Humphries, D.L., 2021. Public health and clinical implications of nutrition-infection interactions. Nutrition and Infectious Diseases: Shifting the Clinical Paradigm, pp.459-481.
3. Gudiol, C., Albasanz-Puig, A., Cuervo, G. and Carratalà, J., 2021. Understanding and managing sepsis in patients with cancer in the era of antimicrobial resistance. Frontiers in medicine, 8, p.636547.
4. Ball, B., Langille, M. and Geddes-McAlister, J., 2020. Fun (gi) omics: Advanced and diverse technologies to explore emerging fungal pathogens and define mechanisms of antifungal resistance. MBio, 11(5), pp.10-1128.
5. Mancuso, G., Midiri, A., Gerace, E. and Biondo, C., 2021. Bacterial antibiotic resistance: the most critical pathogens. Pathogens, 10(10), p.1310.
6. Harsha, M.V., Venkatachalam, S., Pooja, M. and Paranjothy, M., 2017. Emerging fungal pathogens: A major threat to human life. Int J Pharm Sci, 8(5), p.1923.
7. Godeau, C., 2022. Evaluation of the impact of the dissemination of triazole fungicides in agriculture on Aspergillus fumigatus and proposal of solutions (Doctoral dissertation, Université Bourgogne Franche-Comté).
8. Srivastava, S.R. and Dubey, S., 2020. Knowledge-based systems in medical applications. In Computational intelligence and its applications in healthcare (pp. 189-215). Academic Press.
9. Bhatt, K., Agolli, A., Patel, M.H., Garimella, R., Devi, M., Garcia, E., Amin, H., Domingue, C., Del Castillo, R.G. and Sanchez-Gonzalez, M., 2021. High mortality co-infections of COVID-19 patients: mucormycosis and other fungal infections. Discoveries, 9(1).
10. Kaushik, N., Pujalte, G.G. and Reese, S.T., 2015. Superficial fungal infections. Primary care: clinics in office practice, 42(4), pp.501-516.
11. Hameed, S., Hans, S., Monasky, R., Thangamani, S. and Fatima, Z., 2021. Understanding human microbiota offers novel and promising therapeutic options against Candida infections. Pathogens, 10(2), p.183.
12. Pham, D., Sivalingam, V., Tang, H.M., Montgomery, J.M., Chen, S.C.A. and Halliday, C.L., 2024. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. Journal of Fungi, 10(7), p.447.
13. Bisen, A.C., Sanap, S.N., Agrawal, S., Biswas, A., Mishra, A., Verma, S.K., Singh, V. and Bhatta, R.S., 2024. Etiopathology, Epidemiology, Diagnosis, and Treatment of Fungal Keratitis. ACS Infectious Diseases.
14. Alara, J.A. and Alara, O.R., 2024. An Overview of the Global Alarming Increase of Multiple Drug Resistant: A Major Challenge in Clinical Diagnosis. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders), 24(3), pp.26-42.
15. Lim, M. and Shu, Y., 2022. The Future is Fungi: How Fungi Can Feed Us, Heal Us, Free Us and Save Our World. Thames & Hudson Australia.
16. Harsha, M.V., Venkatachalam, S., Pooja, M. and Paranjothy, M., 2017. Emerging fungal pathogens: A major threat to human life. Int J Pharm Sci, 8(5), p.1923.
17. Denning, D.W. and Hope, W.W., 2010. Therapy for fungal diseases: opportunities and priorities. Trends in microbiology, 18(5), pp.195-204.
18. Rodrigues, M.L. and Nosanchuk, J.D., 2023. Recognition of fungal priority pathogens: What next?. PLoS neglected tropical diseases, 17(3), p.e0011136.
19. Garvey, M. and Rowan, N.J., 2023. Pathogenic drug resistant fungi: a review of mitigation strategies. International Journal of Molecular Sciences, 24(2), p.1584.
20. Hoenigl, M., Arastehfar, A., Arendrup, M.C., Brüggemann, R., Carvalho, A., Chiller, T., Chen, S., Egger, M., Feys, S., Gangneux, J.P. and Gold, J.A., 2024. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clinical Microbiology Reviews, pp.e00074-23.
21. Fang, W., Wu, J., Cheng, M., Zhu, X., Du, M., Chen, C., Liao, W., Zhi, K. and Pan, W., 2023. Diagnosis of invasive fungal infections: challenges and recent developments. Journal of biomedical science, 30(1), p.42.
22. Parums, D.V., 2022. The World Health Organization (WHO) fungal priority pathogens list in response to emerging fungal pathogens during the COVID-19 pandemic. Medical science monitor: international medical journal of experimental and clinical research, 28, pp.e939088-1.
23. Osborn, J., Roberts, T., Guillen, E., Bernal, O., Roddy, P., Ongarello, S., Sprecher, A., Page, A.L., Ribeiro, I., Piriou, E. and Tamrat, A., 2020. Prioritising pathogens for the management of severe febrile patients to improve clinical care in low-and middle-income countries. BMC Infectious Diseases, 20, pp.1-11.
24. Garvey, M. and Rowan, N.J., 2023. Pathogenic drug resistant fungi: a review of mitigation strategies. International Journal of Molecular Sciences, 24(2), p.1584.
25. Dao, A., Kim, H.Y., Garnham, K., Kidd, S., Sati, H., Perfect, J., Sorrell, T.C., Harrison, T., Rickerts, V., Gigante, V. and Alastruey-Izquierdo, A., 2024. Cryptococcosis—a systematic review to inform the World Health Organization Fungal Priority Pathogens List. Medical Mycology, 62(6).
26. Zhao, Y., Ye, L., Zhao, F., Zhang, L., Lu, Z., Chu, T., Wang, S., Liu, Z., Sun, Y., Chen, M. and Liao, G., 2023. Cryptococcus neoformans, a global threat to human health. Infectious Diseases of Poverty, 12(02), pp.1-18.
27. Tugume, L., Ssebambulidde, K., Kasibante, J., Ellis, J., Wake, R.M., Gakuru, J., Lawrence, D.S., Abassi, M., Rajasingham, R., Meya, D.B. and Boulware, D.R., 2023. Cryptococcal meningitis. Nature Reviews Disease Primers, 9(1), p.62.
28. Kenosi, K., Mosimanegape, J., Daniel, L. and Ishmael, K., 2023. Recent Advances in the Ecoepidemiology, Virulence and Diagnosis of Cryptococcus neoformans and Cryptococcus gattii Species Complexes. The Open Microbiology Journal, 17(1).
29. Casalini, G., Giacomelli, A. and Antinori, S., 2024. The WHO fungal priority pathogens list: a crucial reappraisal to review the prioritisation. The Lancet Microbe.
30. Casalini, G., Giacomelli, A. and Antinori, S., 2024. The WHO fungal priority pathogens list: a crucial reappraisal to review the prioritisation. The Lancet Microbe.
31. Perrone, G. and Gallo, A., 2017. Aspergillus species and their associated mycotoxins. Mycotoxigenic fungi: Methods and protocols, pp.33-49.
32. Guarro, J., Xavier, M.O. and Severo, L.C., 2010. Differences and similarities amongst pathogenic Aspergillus species. Aspergillosis: from diagnosis to prevention, pp.7-32.
33. O’Gorman, C.M., 2011. Airborne Aspergillus fumigatus conidia: a risk factor for aspergillosis. Fungal biology reviews, 25(3), pp.151-157.
34. De Linares, C., Navarro, D., Puigdemunt, R. and Belmonte, J., 2023. Aspergillus conidia and allergens in outdoor environment: a health hazard?. Journal of Fungi, 9(6), p.624.
35. Zhou, Y., Zhang, Z., Tian, J. and Xiong, S., 2020. Risk factors associated with disease progression in a cohort of patients infected with the 2019 novel coronavirus. Annals of palliative medicine, 9(2), pp.42836-42436.
36. Douglas, A.P., Smibert, O.C., Bajel, A., Halliday, C.L., Lavee, O., McMullan, B., Yong, M.K., van Hal, S.J., Chen, S.C.A., Australasian Antifungal Guidelines Steering Committee and Slavin, M.A., 2021. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Internal Medicine Journal, 51, pp.143-176.
37. Raoult, D., Zumla, A., Locatelli, F., Ippolito, G. and Kroemer, G., 2020. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell stress, 4(4), p.66.
38. Zhang, S.X., Babady, N.E., Hanson, K.E., Harrington, A.T., Larkin, P.M., Leal Jr, S.M., Luethy, P.M., Martin, I.W., Pancholi, P., Procop, G.W. and Riedel, S., 2021. Recognition of diagnostic gaps for laboratory diagnosis of fungal diseases: expert opinion from the Fungal Diagnostics Laboratories Consortium (FDLC). Journal of clinical microbiology, 59(7), pp.10-1128.
39. Das, R., Kotra, K., Singh, P., Loh, B., Leptihn, S. and Bajpai, U., 2022. Alternative treatment strategies for secondary bacterial and fungal infections associated with COVID-19. Infectious diseases and therapy, pp.1-25.
40. Snelders, E., Melchers, W.J.G. and Verweij, P.E., 2012. General introduction and outline of this thesis. Azole resistance in Aspergillus fumigatus: collateral damage of fungicide use, 6, p.9.
41. Vazquez, J.A., Miceli, M.H. and Alangaden, G., 2013. Invasive fungal infections in transplant recipients. Therapeutic advances in infectious disease, 1(3), pp.85-105.
42. Ahmad, S. and Khan, Z., 2012. Invasive candidiasis: a review of nonculture-based laboratory diagnostic methods. Indian journal of medical microbiology, 30(3), pp.264-269.
43. Nguyen, M.H., Wissel, M.C., Shields, R.K., Salomoni, M.A., Hao, B., Press, E.G., Shields, R.M., Cheng, S., Mitsani, D., Vadnerkar, A. and Silveira, F.P., 2012. Performance of Candida real-time polymerase chain reaction, β-D-glucan assay, and blood cultures in the diagnosis of invasive candidiasis. Clinical infectious diseases, 54(9), pp.1240-1248.
44. Roberts, C.L., Algert, C.S., Rickard, K.L. and Morris, J.M., 2015. Treatment of vaginal candidiasis for the prevention of preterm birth: a systematic review and meta-analysis. Systematic reviews, 4, pp.1-9.
45. Nasution, A.I., 2013. Virulence factor and pathogenicity of Candida albicans in oral candidiasis. World journal of dentistry, 4(4), pp.267-271.
46. Cuéllar-Cruz, M., López-Romero, E., Villagómez-Castro, J.C. and Ruiz-Baca, E., 2012. Candida species: new insights into biofilm formation. Future microbiology, 7(6), pp.755-771.
47. Chandra, J. and Mukherjee, P.K., 2015. Candida biofilms: development, architecture, and resistance. Microbial Biofilms, pp.115-134.
48. Alves, P.G.V., de Paula Menezes, R., Silva, N.B.S., de Oliveira Faria, G., de Souza Bessa, M.A., de Araújo, L.B., Aguiar, P.A.D.F., Penatti, M.P.A., dos Santos Pedroso, R. and de Brito Röder, D.V.D., 2024. Virulence factors, antifungal susceptibility and molecular profile in Candida species isolated from the hands of health professionals before and after cleaning with 70% ethyl alcohol-based gel. Journal of Medical Mycology, 34(2), p.101482.
49. Zhang, S.X., O'donnell, K. and Sutton, D.A., 2015. Fusarium and other opportunistic hyaline fungi. Manual of clinical microbiology, pp.2057-2086.
50. Cortés‐López, P.N., Guzmán‐Montijo, E., Fuentes‐Venado, C.E., Arenas, R., Bonifaz, A., Pinto‐Almazán, R. and Martínez‐Herrera, E., 2024. Cutaneous fusarium disease and leukaemias: A systematic review. Mycoses, 67(7), p.e13759.
51. Nucci, M. and Anaissie, E., 2023. Invasive fusariosis. Clinical Microbiology Reviews, 36(4), pp.e00159-22.
52. Prakash, S. and Kumar, A., 2023. Mucormycosis threats: a systemic review. Journal of Basic Microbiology, 63(2), pp.119-127.
53. Mahalaxmi, I., Jayaramayya, K., Venkatesan, D., Subramaniam, M.D., Renu, K., Vijayakumar, P., Narayanasamy, A., Gopalakrishnan, A.V., Kumar, N.S., Sivaprakash, P. and Rao, K.R.S., 2021. Mucormycosis: An opportunistic pathogen during COVID-19. Environmental research, 201, p.111643.
54. Kasvala, D., Monpara, P., Patel, P. and Upadhyay, U., 2021. A review on mucormycosis. World Journal of Pharmaceutical Research, 13.
55. Reid, G., Lynch III, J.P., Fishbein, M.C. and Clark, N.M., 2020, February. Mucormycosis. In Seminars in respiratory and critical care medicine (Vol. 41, No. 01, pp. 099-114). Thieme Medical Publishers.
56. Bastos, R.W., Rossato, L., Goldman, G.H. and Santos, D.A., 2021. Fungicide effects on human fungal pathogens: cross-resistance to medical drugs and beyond. PLoS Pathogens, 17(12), p.e1010073.
57. Lee, Y., Puumala, E., Robbins, N. and Cowen, L.E., 2020. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chemical reviews, 121(6), pp.3390-3411.
58. Adetunji, C.O. and Varma, A., 2020. Biotechnological application of Trichoderma: A powerful fungal isolate with diverse potentials for the attainment of food safety, management of pest and diseases, healthy planet, and sustainable agriculture. Trichoderma: Agricultural Applications and Beyond, pp.257-285.
59. Bastos, R.W., Rossato, L., Goldman, G.H. and Santos, D.A., 2021. Fungicide effects on human fungal pathogens: cross-resistance to medical drugs and beyond. PLoS Pathogens, 17(12), p.e1010073.
60. Kaur, L., 2023. Fungicide Resistance in the Early and Late Leaf Spot Pathogens of Peanut and Their Management (Master's thesis).
61. Francis, C.A. and Clegg, M.D., 2020. Crop rotations in sustainable production systems. In Sustainable agricultural systems (pp. 107-122). CRC Press.
62. Meher, J., Rajput, R.S., Bajpai, R., Teli, B. and Sarma, B.K., 2020. Trichoderma: A globally dominant commercial biofungicide. Trichoderma: Agricultural applications and beyond, pp.195-208.
63. Sen, A., Oswalia, J., Yadav, S., Vachher, M. and Nigam, A., 2024. Current Research in Biotechnology. Current Research in Biotechnology, 7, p.100205.
64. Hoenigl, M., Sprute, R., Egger, M., Arastehfar, A., Cornely, O.A., Krause, R., Lass-Flörl, C., Prattes, J., Spec, A., Thompson, G.R. and Wiederhold, N., 2021. The antifungal pipeline: fosmanogepix, ibrexafungerp, olorofim, opelconazole, and rezafungin. Drugs, 81, pp.1703-1729.
65. Armstrong-James, D., 2021. Future directions for clinical respiratory fungal research. Mycopathologia, 186(5), pp.685-696.
66. Hyde, K.D., Al-Hatmi, A.M., Andersen, B., Boekhout, T., Buzina, W., Dawson, T.L., Eastwood, D.C., Jones, E.G., de Hoog, S., Kang, Y. and Longcore, J.E., 2018. The world’s ten most feared fungi. Fungal Diversity, 93, pp.161-194.
67. Roberts, D.M. and Gilger, B.C., 2024. Current therapy and advancements in the treatment of equine fungal keratitis. Journal of the American Veterinary Medical Association, 1(aop), pp.1-9.
68. Pfaller, M.A., Castanheira, M., Messer, S.A., Moet, G.J. and Jones, R.N., 2011. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY Antimicrobial Surveillance Program (2009). Diagnostic microbiology and infectious disease, 69(1), pp.45-50.
69. Kumari, H., Prakash, S., Minakshi and Kumar, A., 2024. Strategies for Enhancing the Production of Echinocandin. In Fungi Bioactive Metabolites: Integration of Pharmaceutical Applications (pp. 633-647). Singapore: Springer Nature Singapore.
70. Vishwakarma, M., Haider, T. and Soni, V., 2023. Update on fungal lipid biosynthesis inhibitors as antifungal agents. Microbiological Research, p.127517.
71. Pfaller, M.A., Carvalhaes, C.G. and Castanheira, M., 2023. Susceptibility patterns of amphotericin B, itraconazole, posaconazole, voriconazole and caspofungin for isolates causing invasive mould infections from the SENTRY Antifungal Surveillance Program (2018–2021) and application of single‐site epidemiological cutoff values to evaluate amphotericin B activity. Mycoses, 66(10), pp.854-868.
72. Yenişehirli, G., Alıcı, A. and Yenişehirli, A., 2023. Antifungal drug susceptibility profiles and molecular mechanisms of azole resistance in Candida blood stream isolates. Indian Journal of Medical Microbiology, 45, p.100389.
73. Alcazar‐Fuoli, L. and Mellado, E., 2014. Current status of antifungal resistance and its impact on clinical practice. British journal of haematology, 166(4), pp.471-484.
74. Sanglard, D., 2002. Resistance of human fungal pathogens to antifungal drugs. Current opinion in microbiology, 5(4), pp.379-385.
75. Kanafani, Z.A. and Perfect, J.R., 2008. Resistance to antifungal agents: mechanisms and clinical impact. Clinical infectious diseases, 46(1), pp.120-128.
76. Rabaan, A.A., Sulaiman, T., Al-Ahmed, S.H., Buhaliqah, Z.A., Buhaliqah, A.A., AlYuosof, B., Alfaresi, M., Al Fares, M.A., Alwarthan, S., Alkathlan, M.S. and Almaghrabi, R.S., 2023. Potential strategies to control the risk of antifungal resistance in humans: A comprehensive review. Antibiotics, 12(3), p.608.
77. Neoh, C.F., Jeong, W., Kong, D.C. and Slavin, M.A., 2023. The antifungal pipeline for invasive fungal diseases: what does the future hold?. Expert Review of Anti-infective Therapy, 21(6), pp.577-594.
78. Carmo, A., Rocha, M., Pereirinha, P., Tomé, R. and Costa, E., 2023. Antifungals: from pharmacokinetics to clinical practice. Antibiotics, 12(5), p.884.
79. Sousa, F., Nascimento, C., Ferreira, D., Reis, S. and Costa, P., 2023. Reviving the interest in the versatile drug nystatin: A multitude of strategies to increase its potential as an effective and safe antifungal agent. Advanced Drug Delivery Reviews, 199, p.114969.
80. Taori, T., Wadher, B., Maheshwari, S., Mohod, S. and Dangore, S., 2024. Pharmacological management of oral lesion. International Arab Journal of Dentistry (IAJD), 15(1), pp.184-198.
81. Sant, D.G., Tupe, S.G., Ramana, C.V. and Deshpande, M.V., 2016. Fungal cell membrane—promising drug target for antifungal therapy. Journal of Applied Microbiology, 121(6), pp.1498-1510.
82. Chen, S.C.A., Slavin, M.A. and Sorrell, T.C., 2011. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs, 71, pp.11-41.
83. Szymański, M., Chmielewska, S., Czyżewska, U., Malinowska, M. and Tylicki, A., 2022. Echinocandins–structure, mechanism of action and use in antifungal therapy. Journal of enzyme inhibition and medicinal chemistry, 37(1), pp.876-894.
84. Mroczyńska, M. and Brillowska-Dąbrowska, A., 2020. Review on current status of echinocandins use. Antibiotics, 9(5), p.227.
85. Murphy, S.E. and Bicanic, T., 2021. Drug resistance and novel therapeutic approaches in invasive candidiasis. Frontiers in cellular and infection microbiology, 11, p.759408.
86. Roy, M., Karhana, S., Shamsuzzaman, M. and Khan, M.A., 2023. Recent drug development and treatments for fungal infections. Brazilian Journal of Microbiology, 54(3), pp.1695-1716.
87. Logan, A., Wolfe, A. and Williamson, J.C., 2022. Antifungal resistance and the role of new therapeutic agents. Current Infectious Disease Reports, 24(9), pp.105-116.
88. Hammoudi Halat, D., Younes, S., Mourad, N. and Rahal, M., 2022. Allylamines, benzylamines, and fungal cell permeability: a review of mechanistic effects and usefulness against fungal pathogens. Membranes, 12(12), p.1171.
89. Raj, G.M., 2021. Antifungal Drugs. Introduction to Basics of Pharmacology and Toxicology: Volume 2: Essentials of Systemic Pharmacology: From Principles to Practice, pp.905-926.
90. Odds, F.C., 2003. Antifungal agents: their diversity and increasing sophistication. Mycologist, 17(2), pp.51-55.
91. Hay, R.J., 2023. Antifungal drugs. In European handbook of dermatological treatments (pp. 1543-1554). Cham: Springer International Publishing.
92. Denning, D.W., 2022. Antifungal drug resistance: an update. European Journal of Hospital Pharmacy, 29(2), pp.109-112.
93. Mota Fernandes, C., Dasilva, D., Haranahalli, K., McCarthy, J.B., Mallamo, J., Ojima, I. and Del Poeta, M., 2021. The future of antifungal drug therapy: novel compounds and targets. Antimicrobial agents and chemotherapy, 65(2), pp.10-1128.
94. Perfect, J.R. and Ghannoum, M., 2020. Emerging issues in antifungal resistance. Infectious Disease Clinics, 34(4), pp.921-943.
95. Pemán, J., Cantón, E. and Espinel-Ingroff, A., 2009. Antifungal drug resistance mechanisms. Expert review of anti-infective therapy, 7(4), pp.453-460.
96. Perfect, J.R., 2013. Fungal diagnosis: how do we do it and can we do better?. Current medical research and opinion, 29(sup4), pp.3-11.
97. Mendonca, A., Santos, H., Franco-Duarte, R. and Sampaio, P., 2022. Fungal infections diagnosis–past, present and future. Research in Microbiology, 173(3), p.103915.
98. Sedik, S., Wolfgruber, S., Hoenigl, M. and Kriegl, L., 2024. Diagnosing fungal infections in clinical practice: a narrative review. Expert Review of Anti-infective Therapy, (just-accepted).
99. Fang, W., Wu, J., Cheng, M., Zhu, X., Du, M., Chen, C., Liao, W., Zhi, K. and Pan, W., 2023. Diagnosis of invasive fungal infections: challenges and recent developments. Journal of biomedical science, 30(1), p.42.
100. Ray, M., Ray, A., Dash, S., Mishra, A., Achary, K.G., Nayak, S. and Singh, S., 2017. Fungal disease detection in plants: Traditional assays, novel diagnostic techniques and biosensors. Biosensors and Bioelectronics, 87, pp.708-723.
101. Zeller, I., Schabereiter-Gurtner, C., Mihalits, V., Selitsch, B., Barousch, W., Hirschl, A.M., Makristathis, A. and Willinger, B., 2017. Detection of fungal pathogens by a new broad range real-time PCR assay targeting the fungal ITS2 region. Journal of Medical Microbiology, 66(10), pp.1383-1392.
102. Willinger, B., Kienzl, D. and Kurzai, O., 2013. 13 Diagnostics of Fungal Infections. In Human fungal pathogens (pp. 229-259). Berlin, Heidelberg: Springer Berlin Heidelberg.
103. Caceres, D.H., Chiller, T. and Lindsley, M.D., 2020. Immunodiagnostic assays for the investigation of fungal outbreaks. Mycopathologia, 185(5), pp.867-880.
104. Rodrigues, M.L. and Nosanchuk, J.D., 2023. Recognition of fungal priority pathogens: What next?. PLoS neglected tropical diseases, 17(3), p.e0011136.
105. Thomas, T.R.A., Kavlekar, D.P. and LokaBharathi, P.A., 2010. Marine drugs from sponge-microbe association—A review. Marine drugs, 8(4), pp.1417-1468.
106. Saxena, S., Chhibber, M. and Singh, I.P., 2019. Fungal bioactive compounds in pharmaceutical research and development. Current Bioactive Compounds, 15(2), pp.211-231.
107. Xu, C., Zhang, R. and Wen, Z., 2018. Bioactive compounds and biological functions of sea cucumbers as potential functional foods. Journal of Functional Foods, 49, pp.73-84.
108. Molinski, T.F., 2004. Antifungal compounds from marine organisms. Current Medicinal Chemistry-Anti-Infective Agents, 3(3), pp.197-220.
109. Thawabteh, A.M., Swaileh, Z., Ammar, M., Jaghama, W., Yousef, M., Karaman, R., A. Bufo, S. and Scrano, L., 2023. Antifungal and antibacterial activities of isolated marine compounds. Toxins, 15(2), p.93.
110. El-Hossary, E.M., Cheng, C., Hamed, M.M., Hamed, A.N.E.S., Ohlsen, K., Hentschel, U. and Abdelmohsen, U.R., 2017. Antifungal potential of marine natural products. European journal of medicinal chemistry, 126, pp.631-651.
111. Abad, M.J., Bedoya, L.M. and Bermejo, A.P., 2011. Marine compounds and their antimicrobial activities. Science against microbial pathogens: communicating current research and technological advances, 51, pp.1293-1306.
112. Soliman, G.M., 2017. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges. International journal of pharmaceutics, 523(1), pp.15-32.
113. Wu, S., Song, R., Liu, T. and Li, C., 2023. Antifungal therapy: Novel drug delivery strategies driven by new targets. Advanced Drug Delivery Reviews, 199, p.114967.
114. de Almeida Campos, L., Fin, M.T., Santos, K.S., de Lima Gualque, M.W., Freire Cabral, A.K.L., Khalil, N.M., Fusco-Almeida, A.M., Mainardes, R.M. and Mendes-Giannini, M.J.S., 2023. Nanotechnology-based approaches for voriconazole delivery applied to invasive fungal infections. Pharmaceutics, 15(1), p.266.
115. Waghule, T., Sankar, S., Rapalli, V.K., Gorantla, S., Dubey, S.K., Chellappan, D.K., Dua, K. and Singhvi, G., 2020. Emerging role of nanocarriers based topical delivery of anti‐fungal agents in combating growing fungal infections. Dermatologic therapy, 33(6), p.e13905.
116. Matras, E., Gorczyca, A., Przemieniecki, S.W. and Oćwieja, M., 2022. Surface properties-dependent antifungal activity of silver nanoparticles. Scientific Reports, 12(1), p.18046.
117. Żarowska, B., Koźlecki, T., Piegza, M., Jaros-Koźlecka, K. and Robak, M., 2019. New look on antifungal activity of silver nanoparticles (AgNPs). Polish journal of microbiology, 68(4), pp.515-525.
118. Sousa, F., Ferreira, D., Reis, S. and Costa, P., 2020. Current insights on antifungal therapy: Novel nanotechnology approaches for drug delivery systems and new drugs from natural sources. Pharmaceuticals, 13(9), p.248.
119. Pham, D., Sivalingam, V., Tang, H.M., Montgomery, J.M., Chen, S.C.A. and Halliday, C.L., 2024. Molecular Diagnostics for Invasive Fungal Diseases: Current and Future Approaches. Journal of Fungi, 10(7), p.447.
120. Jacobs, S.E., Zagaliotis, P. and Walsh, T.J., 2021. Novel antifungal agents in clinical trials [version 1; peer.
121. Espinel-Ingroff, A., 2009. Novel antifungal agents, targets or therapeutic strategies for the treatment of invasive fungal diseases: a review of the literature (2005-2009). Revista Iberoamericana de Micologia, 26(1), pp.15-22.
122. Hoenigl, M., Arastehfar, A., Arendrup, M.C., Brüggemann, R., Carvalho, A., Chiller, T., Chen, S., Egger, M., Feys, S., Gangneux, J.P. and Gold, J.A., 2024. Novel antifungals and treatment approaches to tackle resistance and improve outcomes of invasive fungal disease. Clinical Microbiology Reviews, pp.e00074-23.
123. Zhu, P., Li, Y., Guo, T., Liu, S., Tancer, R.J., Hu, C., Zhao, C., Xue, C. and Liao, G., 2023. New antifungal strategies: drug combination and co-delivery. Advanced Drug Delivery Reviews, 198, p.114874.
124. Boyer, J., Hoenigl, M. and Kriegl, L., 2024. Therapeutic drug monitoring of antifungal therapies: do we really need it and what are the best practices?. Expert Review of Clinical Pharmacology, 17(4), pp.309-321.
125. August, B.A. and Kale‐Pradhan, P.B., 2024. Management of invasive candidiasis: A focus on rezafungin, ibrexafungerp, and fosmanogepix. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy.
126. Chaudhari, V., Vairagade, V., Thakkar, A., Shende, H. and Vora, A., 2024. Nanotechnology-based fungal detection and treatment: current status and future perspective. Naunyn-Schmiedeberg's Archives of Pharmacology, 397(1), pp.77-97.
127. Abd-Elsalam, K.A., 2023. Fungal nanotechnology for improving farm productivity and sustainability: A note.
128. Kuddus, M., Ahmad, I.Z. and Hussain, C.M. eds., 2023. Myconanotechnology and Application of Nanoparticles in Biology: Fundamental Concepts, Mechanism and Industrial Applications. Elsevier.
129. Jacobs, S.E., Zagaliotis, P. and Walsh, T.J., 2021. Novel antifungal agents in clinical trials. F1000Research, 10.
130. Neoh, C.F., Jeong, W., Kong, D.C. and Slavin, M.A., 2023. The antifungal pipeline for invasive fungal diseases: what does the future hold?. Expert Review of Anti-infective Therapy, 21(6), pp.577-594.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sadam Hussain Shaikh, Muneer Ahmed Qazi (Author)

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
License and Copyright Policy
All articles published in Precision Medicine and Health Journal are open access and distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
This license permits any non-commercial use, sharing, adaptation, distribution, and reproduction in any medium or format, provided the following conditions are met:
-
Attribution – Appropriate credit must be given to the original author(s) and the source, a link to the Creative Commons license must be provided, and any changes made must be indicated.
-
Non-Commercial – The material may not be used for commercial purposes without prior written permission from the copyright holder (the author(s) or the journal).
-
Integrity – If changes are made to the work (e.g., translation, adaptation, summary), these must be clearly indicated.
Authors retain copyright of their articles and grant Precision Medicine and Health Journal the right of first publication. Authors may also deposit the final published version in institutional or subject repositories, or share it on academic social networks, provided proper citation to the original publication in this journal is included.
For commercial use of published material, permission must be obtained from the editorial office at editor@pmhjournal.com.
License Link:
https://creativecommons.org/licenses/by-nc/4.0/